Check pandas version: pd.show_versions
This article explains how to check the pandas version used in Python (.py
) or Jupyter Notebook (.ipynb
).
Contents
Refer to the following article to learn how to check the version of pandas installed in your environment using the pip
command.
Check pandas version: the __version__
attribute
Like many other packages, you can get the pandas version using the __version__
attribute.
import pandas as pd
print(pd.__version__)
# 2.0.1
source: pandas_version.py
Print detailed information about pandas: pd.show_versions()
The pd.show_versions()
function outputs detailed information, including the version of Python, dependent packages, and OS type.
pd.show_versions()
#
# INSTALLED VERSIONS
# ------------------
# commit : 37ea63d540fd27274cad6585082c91b1283f963d
# python : 3.11.3.final.0
# python-bits : 64
# OS : Darwin
# OS-release : 22.4.0
# Version : Darwin Kernel Version 22.4.0: Mon Mar 6 21:01:02 PST 2023; root:xnu-8796.101.5~3/RELEASE_ARM64_T8112
# machine : arm64
# processor : arm
# byteorder : little
# LC_ALL : None
# LANG : ja_JP.UTF-8
# LOCALE : ja_JP.UTF-8
#
# pandas : 2.0.1
# numpy : 1.24.3
# pytz : 2022.7.1
# dateutil : 2.8.2
# setuptools : 67.6.1
# pip : 23.1.2
# Cython : None
# pytest : None
# hypothesis : None
# sphinx : None
# blosc : None
# feather : None
# xlsxwriter : None
# lxml.etree : 4.9.2
# html5lib : None
# pymysql : None
# psycopg2 : None
# jinja2 : 3.1.2
# IPython : 8.13.1
# pandas_datareader: None
# bs4 : 4.11.2
# bottleneck : None
# brotli : None
# fastparquet : None
# fsspec : None
# gcsfs : None
# matplotlib : None
# numba : None
# numexpr : None
# odfpy : None
# openpyxl : None
# pandas_gbq : None
# pyarrow : None
# pyreadstat : None
# pyxlsb : None
# s3fs : None
# scipy : None
# snappy : None
# sqlalchemy : None
# tables : None
# tabulate : None
# xarray : None
# xlrd : None
# zstandard : None
# tzdata : 2023.3
# qtpy : None
# pyqt5 : None
source: pandas_version.py
When reporting bugs, you should provide the output of pd.show_versions()
.
Output in JSON format and save as a file
Passing True
as an argument to pd.show_versions()
will output the result in JSON format.
pd.show_versions(True)
# {
# "system": {
# "commit": "37ea63d540fd27274cad6585082c91b1283f963d",
# "python": "3.11.3.final.0",
# "python-bits": 64,
# "OS": "Darwin",
# "OS-release": "22.4.0",
# "Version": "Darwin Kernel Version 22.4.0: Mon Mar 6 21:01:02 PST 2023; root:xnu-8796.101.5~3/RELEASE_ARM64_T8112",
# "machine": "arm64",
# "processor": "arm",
# "byteorder": "little",
# "LC_ALL": null,
# "LANG": "ja_JP.UTF-8",
# "LOCALE": {
# "language-code": "ja_JP",
# "encoding": "UTF-8"
# }
# },
# "dependencies": {
# "pandas": "2.0.1",
# "numpy": "1.24.3",
# "pytz": "2022.7.1",
# "dateutil": "2.8.2",
# "setuptools": "67.6.1",
# "pip": "23.1.2",
# "Cython": null,
# "pytest": null,
# "hypothesis": null,
# "sphinx": null,
# "blosc": null,
# "feather": null,
# "xlsxwriter": null,
# "lxml.etree": "4.9.2",
# "html5lib": null,
# "pymysql": null,
# "psycopg2": null,
# "jinja2": "3.1.2",
# "IPython": "8.13.1",
# "pandas_datareader": null,
# "bs4": "4.11.2",
# "bottleneck": null,
# "brotli": null,
# "fastparquet": null,
# "fsspec": null,
# "gcsfs": null,
# "matplotlib": null,
# "numba": null,
# "numexpr": null,
# "odfpy": null,
# "openpyxl": null,
# "pandas_gbq": null,
# "pyarrow": null,
# "pyreadstat": null,
# "pyxlsb": null,
# "s3fs": null,
# "scipy": null,
# "snappy": null,
# "sqlalchemy": null,
# "tables": null,
# "tabulate": null,
# "xarray": null,
# "xlrd": null,
# "zstandard": null,
# "tzdata": "2023.3",
# "qtpy": null,
# "pyqt5": null
# }
# }
source: pandas_version.py
If you pass a path string, the results in JSON format will be saved to the specified path.
pd.show_versions('data/temp/pandas_versions.txt')
source: pandas_version.py